Exercices de Physique Générale II (SIE GC) 03/04,/2025

Série d’exercices n°7

Solution de ’exercice 1

1. Qapc = AUapc — Wapc = +800 — (—500) = 1300J.
2. Wapc =Wap =Pa(Va—Vg)=Pa(Va— Vo)
Wepa =Wep = Po(Ve —Vp) = —Po(Va — Vi)

Comme P4 = 5Pc on trouve Wep = — W‘BBC = +100J.
3. Sur le cycle AU = 0 car I’énergie interne est une fonction d’état, d’ou AUcpa =
—AUapc. De plus Qepa = AUcpa — Wepa. On trouve donc Qopa = —AUape —

Wepa = —800 — 100 = —900 J.

4. Qep = AUcp—Wep = (AUcpa—AUpa)—Wep = (—AUapc —AUpa) —Wep =
(=800 — 500) — 100 = —1400 J.

Solution de ’exercice 2

1. L’énergie interne de ’ensemble ne varie pas, car le systéme ne regoit ni travail (paroi
rigide), ni chaleur (paroi adiabatique).

2. Sachant que I’énergie interne du systéme ne varie pas, ses valeurs avant et apreés le
retrait de la paroi doivent étre identiques :

nicyTi + noc, T = (n1 + ne2)ey Tt

ou T; dénote la température de chaque gaz avant le retrait de la paroi. On en déduit
T; = T; : la température des gaz ne varie pas.

3. On constate que ’énergie interne n’est plus proportionnelle & la température, du fait
de la présence d’un terme de correction en n?/V. En utilistant la conservation de
Pénergie interne du systéme complet (i.e. de 'ensemble des deux gaz) comme a la
question précédente, on trouvera que T; # Tt : la température n’est pas constante !

o (i )

(n1+n2)Cvm \Vi Va2 Vi+Vy )7

a(ny —nsy)?

2CV’mV(’n,1 + TLQ) ’

Dans le cas général on trouve Ty =T —

Dans le cas de I’énoncé : Ty =T —

p1+ D2
pf - T.
AN : py = 1.5 bar.
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Solution de ’exercice 3

1. On commence par écrire le bilan de forces qui agissent sur le volume infinitésimal :
Fiot = —pdVgi, + PSt. — (P + dP)Si.,

ol le premier terme représente le poids du volume infinitésimal (g est 'accélération
de gravité et dV = Sdh). A 1’équilibre Fiot = 0 et donc :

dP = —pgdh. (1)

2. On considére une masse d’air m contenue dans un volume variable V. Puisqu’on
considére le cas adiabatique, on a :

PV7™ = const.
En divisant par m” de part et d’autre, on peut trouver la pression :
m\"Y
P = const. x <V> = const. X p”

Cette expression est valide pour toute altitude, en particulier au niveau du sol. On
obtient donc le ratio des densités volumiques :

p P 1/~
po (Po>

En substituant cette relation dans I’équation , on obtient :

P 1/~
dP = —pog (Po) dh.

On multiplie les deux termes par P~/ pour obtenir :

pdp = -9 _qp,
Py /v

dont la solution est :
Y PW*l Pog
T — _

’yfl .P()l/’Y

avec A constante & déterminer. En imposant P(0) = Py, on trouve :

X ol
-1 -1 h\71
Piropo(h) = Po (1 - 7”0%) =P <1 - ) :

h+ A,

ol

La variation de la température avec laltitude peut étre dérivée en utilisant I’équation
d’état du gaz parfait :

Tosopo(h) = oW MPy (1 h) -, (1 - h) ,

Rp(h) — Rpo \' ho ho
ou 'on a identifie Ty = M Py/(Rpo) avec la température au sol.

Application numérique: En utilisant les valeurs py = 1,23 kgm™2 et Py = 10° Pa, on
trouve hg = 29 km. Ceci nous donne une variation de —Ty/hg =~ —0,00lKm™"! pour
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la température. Le taux de variation de la pression avec laltitude s’obtient, pour de
petites valeurs de h, a l'aide d’un développement limité :

dPy Py v

Ptropo(h) ~ Ptropo(o) + h# o = Ptropo(o) - %ﬁh;

soit une variation de —y/(y—1)-(Py/ho) =~ —12 Pam™" pour la pression. Ces valeurs
sont en accord avec les ordres de grandeur que l’on observe dans la nature et qui sont
utilisées par exemple en aéronautique.

3. A la question précédente, on a trouvé que la seule caractéristique du gaz qui intervient
dans P'expression de P(h) est . Ainsi, deux gaz avec des v identiques auront le méme
profil de pression. C’est par exemple le cas de I'oxygéne et de 'azote, qui sont tous
deux des molécules diatomiques, c’est-a-dire avec le méme nombre de degrés de liberté
et donc les mémes valeurs de ¢, et c,. Votre ami a donc tort! Il aurait par contre eu
raison s’il avait parlé du COs, qui est une molécule composée de trois atomes et dont
le coefficient adiabatique y différe de celui de 'oxygéne et de 'azote.

4. La loi des gaz parfaits peut s’écrire de la fagon suivante :

n nm 1

ou M est la masse molaire de I'air. De 14, on tire une expression pour la masse

volumique p = R¥ 5 -, qu’on injecte dans l’équation :
MPg dpP Mg
dP = — dh = — =— dh
RTstrat P RTstrat

On intégre entre h = hgrans €t A > Agrans :

P h

dP M
/ =R / ah
Pirans P RTstrat h

trans

P h

P M
/ My / dh
Pirans P RTstrat h

Mg “
- h - h rans
RTstrat( o )

P
= log iz =
trans

_ Mg h—HRtrans —(h—h A
P(h) = Ptranse RTstrat( 3 ) — Ptranse ( trans)/ 1

avec hl = RTstrat/Mg et Tstrat = (1 - htrans/hO) TO-

5. L’énergie potentielle d'une molécule quelconque dans la stratosphére est Eyo;, = mgh,
ol m dénote la masse de la molécule. D’aprés le postulat de Boltzmann, la probabilité
de trouver cette molécule a une altitude h vaut donc :

E mgh
h) = Aex —p°t> = Aex <—>7
p( ) p( kBTstrat P kBTstrat

ou A est une constante de normalisation. Sachant que le nombre de particules par
unité de volume est proportionnel a p(h), on en déduit :

mgh
h) = I
p(h) = po eXp( kBTsmt>’
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avec pg = p(hirans). Ainsi, la pression dans la stratospheére est :

Rp(h)Tstra
Pstrat(h) = %
o RPOTstrat mg
B M P < kBTstrat h
M
= Pirans €Xp <_ RT g > )
strat

ot l'on a utilisé les relations kg = R/Na et M = Nym.

Solution de ’exercice 4

1. L’air suit une évolution adiabatique et réversible durant la montée et la descente.
Donc en utilisant TP1=7/7 = const, on obtient T,2*~"/7 = 1:5(=7/7. Comme
I’altitude de la plaine est la méme de chaque coté de la montagne : Py = P, et donc
T; = T;. La température de lair en aval de la montagne est égale a la température en
amont. Ce résultat n’explique donc pas le phénoméne du foehn pour lequel T; > T;.

2. Quand la vapeur d’eau contenue dans l'air se condense pour former de 1’eau liquide
(nuages ou pluie), cette liquéfaction libére de la chaleur (chaleur latente de vapori-
sation). Le taux de diminution de la température de l'air humide avec l'altitude, ry,
est donc plus lent que celui de 'air sec 7s.

3. Quand lair redescend sur l'autre versant, le taux d’humidité est plus faible car la

masse d’air a perdu sa vapeur d’eau sous forme de pluie sur le versant amont de la
montagne. Quand 'air commence & redescendre, il est comprimé et se réchauffe, la
pression de vapeur saturante augmente et I’air n’est plus saturé en humidité et ’eau
ne condense plus.
Pour calculer la température T de ’air en amont de l'obstacle, il suffit de suivre
I’évolution de la température pendant la montée en considérant les différentes valeurs
des taux de variation avec l'altitude. On nomme T, et T;, la température de 'air a
altitude n (base des nuages) et au sommet de la montagne (altitude h). Ainsi :

T, — 1T, =rsn variation de T entre le sol et altitude n,
T —Tn =rn(h—n) variation de T entre n et le sommet.
On a donc :

T =T, +rn(h —n) + ren.

Comme l'air qui redescend en aval de la hauteur h jusqu’au sol est sec, le taux de
variation avec l'altitude est rs. Ainsi :

Tf — Tm = 7Tsh.
En y substituant ’expression de T, trouvée ci-dessus on obtient :
Te=T + (rhn—rs)(h —n).

Comme h —n > 0 et r, — rg > 0, on obtient Ty > T}, qui explique le phénoméne du
foehn. L’application numérique donne :

Ty = 10 [°C] + (=5 [°C/1000 m] + 9 [°C/1000m]) x (3000 [m] — 1500 [m])
= 16°C.
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4. La hauteur de la base des nuages vaut :

T — T, _ 3500 ] 22[°C] — 10[°C]

=h-—
! Th —Ts —5[°C/1000m] + 9 [°C/1000 m]

= 500 m.
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